Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 123: 108517, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37235904

RESUMO

This study aimed to explore the potential of Host-Guest coupling with Nanocarrier graphyne (GPH) to enhance the bioavailability of the drug 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (LUM) for brain tumor therapy. The electronic, geometric, and excited-state properties of GPH, LUM, and the graphyne@1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea-complex (GPH@LUM-complex) were studied using DFT B3LYP/6-31G** level of theory. The results showed that the GPH@LUM-complex was stable with negative adsorption energy (-0.20 eV), and there was good interaction between GPH and LUM in the solvent phase. The weak interaction forces between the two indicated an easy release of the drug at the target site. The Frontier Molecular Orbitals (FMO), Charge Density Analysis (CDA), and Natural Bond Orbital (NBO) analysis supported LUM to GPH charge transfer during complex formation, and the Reduced Density Gradient (RDG) isosurfaces identified steric effects and non-bonded interactions. UV-visible examination showed the potential of the GPH@LUM-complex as a drug carrier with a blue shift of 23 nm wavelength in the electronic spectra. The PET process analysis revealed a fluorescence-quenching process, facilitating systematic drug delivery. The study concluded that GPH had potential as a carrier for delivering LUM, and different 2D nanomaterials could be explored for drug delivery applications. The theoretical study's findings may motivate researchers to investigate the practical applications of GPH@LUM-complex in oncology.


Assuntos
Neoplasias Encefálicas , Compostos de Nitrosoureia , Humanos
2.
J Mol Graph Model ; 122: 108468, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031664

RESUMO

Removal of commonly used dyes from water bodies has recently gained great interest from the scientific community. Presence of the methylene blue (MB) dye in drinking water poses harmful effects on the human health. The large-scale removal of MB is achievable through highly efficient, inexpensive, renewable, and biodegradable adsorbents. Our research group has recently synthesized a sodium alginate-based hydrogel and explored its application towards the removal of MB. Previous results have shown that the synthesized hydrogel exhibits a high adsorption capacity of 51.34 mg/g under basic conditions. Herein, we employed the density functional theory (DFT) calculations to explore the mechanism of MB removal by using sodium alginate hydrogel at various pH levels. Results of this study have shown that under acidic/neutral conditions the removal of MB is endergonic (ΔGint = 6.10 kcal/mol). Whereas under basic conditions it is highly exergonic (ΔGint = -97.58 kcal/mol). Moreover, the QTAIM and NCI analyses have shown that the MB dye is chemisorbed to the absorbent via strong covalent-like interactions between the polymer's carboxylate groups and the hydrogens in MB. Furthermore, preferability of basic conditions have been confirmed by the large charge transfer (0.104 |e|), as compared to no charge being transferred in the acidic/neutral conditions.


Assuntos
Hidrogéis , Poluentes Químicos da Água , Humanos , Azul de Metileno , Alginatos , Teoria da Densidade Funcional , Cinética , Corantes , Adsorção
3.
Gels ; 9(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37102940

RESUMO

Globally, water contamination by heavy metals is a serious problem that affects the environment and human health. Adsorption is the most efficient way of water treatment for eliminating heavy metals. Various hydrogels have been prepared and used as adsorbents to remove heavy metals. By taking advantage of poly(vinyl alcohol) (PVA), chitosan (CS), cellulose (CE), and the process for physical crosslinking, we propose a simple method to prepare a PVA-CS/CE composite hydrogel adsorbent for the removal of Pb(II), Cd(II), Zn(II) and Co(II) from water. Structural analyses of the adsorbent were examined by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis, and X-ray diffraction (XRD). PVA-CS/CE hydrogel beads had a good spherical shape together with a robust structure and suitable functional groups for the adsorption of heavy metals. The effects of adsorption parameters such as pH, contact time, adsorbent dose, initial concentration of metal ions, and temperature on the adsorption capacity of PVA-CS/CE adsorbent were studied. The adsorption characteristics of PVA-CS/CE for heavy metals may be completely explained by pseudo-second-order adsorption and the Langmuir adsorption model. The removal efficiency of PVA-CS/CE adsorbent for Pb(II), Cd(II), Zn(II), and Co(II) was 99, 95, 92, and 84%, respectively, within 60 min. The heavy metal's hydrated ionic radius may be crucial in determining the adsorption preference. After five consecutive adsorption-desorption cycles, the removal efficiency remained over 80%. As a result, the outstanding adsorption-desorption properties of PVA-CS/CE can potentially be extended to industrial wastewater for heavy metal ion removal.

4.
Oral Dis ; 29(8): 3583-3598, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35839150

RESUMO

BACKGROUND: Periodontal regenerative therapy using bone-substituting materials has gained favorable clinical significance in enhancing osseous regeneration. These materials should be biocompatible, osteogenic, malleable, and biodegradable. This study assessed the periodontal regenerative capacity of a novel biodegradable bioactive hydrogel template of organic-inorganic composite loaded with melatonin. MATERIALS AND METHODS: A melatonin-loaded alginate-chitosan/beta-tricalcium phosphate composite hydrogel was successfully prepared and characterized. Thirty-six critical-sized bilateral class II furcation defects were created in six Mongrel dogs, and were randomly divided and allocated to three cohorts; sham, unloaded composite, and melatonin-loaded. Periodontal regenerative capacity was evaluated via histologic and histomorphometric analysis. RESULTS: Melatonin-treated group showed accelerated bone formation and advanced maturity, with a significant twofold increase in newly formed inter-radicular bone compared with the unloaded composite. The short-term regenerative efficacy was evident 4 weeks postoperatively as a significant increase in cementum length concurrent with reduction of entrapped epithelium. After 8 weeks, the scaffold produced a quality of newly synthesized bone similar to normal compact bone, with potent periodontal ligament attachment. CONCLUSIONS: Melatonin-loaded hydrogel template accelerated formation and enhanced quality of newly formed bone, allowing complete periodontal regeneration. Furthermore, the scaffold prevented overgrowth and entrapment of epithelial cells in furcation defects.


Assuntos
Defeitos da Furca , Melatonina , Animais , Cães , Regeneração Óssea , Cemento Dentário , Defeitos da Furca/tratamento farmacológico , Defeitos da Furca/cirurgia , Defeitos da Furca/patologia , Regeneração Tecidual Guiada Periodontal , Hidrogéis , Melatonina/farmacologia , Melatonina/uso terapêutico , Ligamento Periodontal/patologia
5.
Polymers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458382

RESUMO

Polyether-ether-ketone (PEEK) biomaterial has been increasingly employed for orthopedic, trauma, spinal, and dental implants due to its biocompatibility and in vivo stability. However, a lack of bioactivity and binding ability to natural bone tissue has significantly limited PEEK for many challenging dental implant applications. In this work, nanocomposites based on PEEK reinforced with bioactive silicate-based bioceramics (forsterite or bioglass) as nanofillers were prepared using high energy ball milling followed by melt blending and compression molding. The influence of nanofillers type and content (10, 20 and 30 wt.%) on the crystalline structure, morphology, surface roughness, hydrophilicity, microhardness, elastic compression modulus, and flexural strength of the nanocomposites was investigated. The scanning electron microscopy images of the nanocomposites with low nanofillers content showed a homogenous surface with uniform dispersion within the PEEK matrix with no agglomerates. All nanocomposites showed an increased surface roughness compared to pristine PEEK. It was found that the incorporation of 20 wt.% forsterite was the most effective in the nanocomposite formulation compared with bioglass-based nanocomposites; it has significantly improved the elastic modulus, flexural strength, and microhardness. In vitro bioactivity evaluation, which used biomimetic simulated body fluid indicated the ability of PEEK nanocomposites loaded with forsterite or bioglass nanofillers to precipitate calcium and phosphate bone minerals on its surface. These nanocomposites are expected to be used in long-term load-bearing implant applications and could be recommended as a promising alternative to titanium and zirconia when used as a dental implant material.

6.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163317

RESUMO

Amphiphilic copolymers are appealing materials because of their interesting architecture and tunable properties. In view of their application in the biomedical field, the preparation of these materials should avoid the use of toxic compounds as catalysts. Therefore, enzymatic catalysis is a suitable alternative to common synthetic routes. Pentablock copolymers (CUC) were synthesized with high yields by ring-opening polymerization of ε-caprolactone (ε-CL) initiated by Pluronic (EPE) and catalyzed by Candida antarctica lipase B enzyme. The variables to study the structure-property relationship were EPEs' molecular weight and molar ratios between ε-CL monomer and EPE macro-initiator (M/In). The obtained copolymers were chemically characterized, the molecular weight determined, and morphologies evaluated. The results suggest an interaction between the reaction time and M/In variables. There was a correlation between the differential scanning calorimetry data with those of X-ray diffraction (WAXD). The length of the central block of CUC copolymers may have an important role in the crystal formation. WAXD analyses indicated that a micro-phase separation takes place in all the prepared copolymers. Preliminary cytotoxicity experiments on the extracts of the polymer confirmed that these materials are nontoxic.


Assuntos
Caproatos/química , Lactonas/química , Poloxâmero/química , Polímeros/química , Varredura Diferencial de Calorimetria/métodos , Catálise , Peso Molecular , Polimerização
7.
Eur J Pharm Sci ; 168: 106080, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34818572

RESUMO

The development of new COX-2 inhibitors with analgesic and anti-inflammatory efficacy as well as minimal gastrointestinal, renal and cardiovascular toxicity, is of vital importance to patients suffering from chronic course pain and inflammatory conditions. This study aims at evaluating the therapeutic activity and adverse drug reactions associated with the use of the newly synthesized pyrazole derivative, compound AD732, E-4-[3-(4-methylphenyl)-5-hydroxyliminomethyl-1H-pyrazol-1-yl]benzenesulfonamide, as compared to indomethacin and celecoxib as standard agents. Anti-inflammatory activity was assessed using carrageenan-induced rat paw edema and cotton pellet granuloma tests; formalin-induced hyperalgesia and hot plate tests were done to study analgesic activity. In vitro tests to determine COX-1/COX-2 selectivity and assessment of renal and gastric toxicity upon acute exposure to AD732 were also conducted. Compound AD732 exhibited promising results; higher anti-inflammatory and analgesic effects compared to standard agents, coupled with the absence of ulcerogenic effects and minimal detrimental effects on renal function. Additionally, compound AD732 was a less potent inhibitor of COX-2 in vitro than celecoxib, which may indicate lower potential cardiovascular toxicity. It may be concluded that compound AD732 appears to be a safer and more effective molecule with promising potential for the management of pain and inflammation.


Assuntos
Analgésicos , Anti-Inflamatórios , Pirazóis , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Carragenina , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Pirazóis/uso terapêutico , Ratos , Ratos Wistar
8.
Nanomedicine (Lond) ; 14(5): 515-528, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30807249

RESUMO

Cells electrical fields have a significant role in cell function. AIM: The current study examined the effects of nanoscale electric fields generated by magneto-electric nanoparticles (MENs) on precancerous liver tissue. METHODS & RESULTS: A total of 30 nm MENs synthesized by sol-gel method were tested in vitro on HepG2 cells and in vivo on liver cell dysplasia in mice, which were exposed to 50 Hz 2 mT for 2 weeks, +/- MENs. MENs with alternating field (AF) reversed liver cells dysplastic features. In vitro cytotoxicity assay showed high lethal dose (LD 50) of 1.4 mg/ml. We also report on the expression of alpha-fetoprotein and cytochrome C. CONCLUSION: MEN-generated nanoscale electric fields have significant biological effects on precancerous liver cells.


Assuntos
Campos Eletromagnéticos , Animais , Citocromos c , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Nanopartículas de Magnetita , Camundongos , alfa-Fetoproteínas/metabolismo
9.
Photodiagnosis Photodyn Ther ; 13: 48-57, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26708297

RESUMO

BACKGROUND: Aluminum phthalocyanine (AlPc) is an efficient second generation photosensitizer (PS) with high fluorescence ability. Its use in photodynamic therapy (PDT) is hampered by hydrophobicity and poor biodistribution. METHODS: AlPc was converted to a biocompatible nanostructure by incorporation into amphiphilic polyethylene glycol-polycaprolactone (PECL) copolymer nanoparticles, allowing efficient entrapment of the PS in the hydrophobic core, water dispersibility and biodistribution enhancement by PEG-induced surface characteristics. A series of synthesized PECL copolymers were used to prepare nanophotosensitizers with an average diameter of 66.5-99.1nm and encapsulation efficiency (EE%) of 66.4-78.0%. One formulation with favorable colloidal properties and relatively slow release over 7 days was selected for in vitro photophysical assessment and in vivo biodistribution studies in mice. RESULTS: The photophysical properties of AlPc were improved by encapsulating AlPc into PECL-NPs, which showed intense fluorescence emission at 687nm and no AlPc aggregation has been induced after entrapment into the nanoparticles. Biodistribution of AlPc loaded NPs (AlPc-NPs) and free AlPc drug in mice was monitored by in vivo whole body fluorescence imaging and ex vivo organ imaging, with in vivo imaging system (IVIS). Compared to a AlPc solution in aqueous TWEEN 80 (2 w/v%), the developed nanophotosensitizer showed targeted drug delivery to lungs, liver and spleen as monitored by the intrinsic fluorescence of AlPc at different time points (1h, 24h and 48h) post iv. administration. CONCLUSIONS: The AlPc-based copolymer nanoparticles developed offer potential as a single agent-multifunctional theranostic nanophotosensitizer for PDT coupled with imaging-guided drug delivery and biodistribution, and possibly also fluorescence diagnostics.


Assuntos
Indóis/farmacocinética , Microscopia de Fluorescência/métodos , Nanocápsulas/química , Compostos Organometálicos/farmacocinética , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacocinética , Nanomedicina Teranóstica/métodos , Animais , Difusão , Composição de Medicamentos/métodos , Indóis/síntese química , Indóis/uso terapêutico , Teste de Materiais , Taxa de Depuração Metabólica , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Especificidade de Órgãos , Compostos Organometálicos/síntese química , Compostos Organometálicos/uso terapêutico , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico , Poliésteres/química , Polietilenoglicóis/química , Tensoativos/síntese química , Tensoativos/farmacocinética , Tensoativos/uso terapêutico , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...